On Two Extensions of Abstract Categorial Grammars

نویسندگان

  • Philippe de Groote
  • Sarah Maarek
  • Ryo Yoshinaka
چکیده

Categorial Grammar • Type-theoretic grammar formalism for describing natural languages • Based on the implicative fragment of linear logic • Resource sensitivity • Simple but enough expressive • Mildly context-sensitive languages are generated by second-order ACGs (de Groote and Pogodalla 2004) On Two Extensions of ACGs – p.3/45 Abstract Categorial Grammar • Type-theoretic grammar formalism for describing natural languages • Based on the implicative fragment of linear logic • Resource sensitivity • Simple but enough expressive • Mildly context-sensitive languages are generated by second-order ACGs (de Groote and Pogodalla 2004)Categorial Grammar • Type-theoretic grammar formalism for describing natural languages • Based on the implicative fragment of linear logic • Resource sensitivity • Simple but enough expressive • Mildly context-sensitive languages are generated by second-order ACGs (de Groote and Pogodalla 2004) On Two Extensions of ACGs – p.3/45 Type-Theoretic Extensions of ACGs • De Groote and Maarek (2007) • To enable ACGs to, for instance, treat feature structures ACGs with Cartesian product ( &) ACGs with dependent product ( Π) • Those two extensions are Turing-complete formalisms On Two Extensions of ACGs – p.4/45 Type-Theoretic Extensions of ACGs • De Groote and Maarek (2007) • To enable ACGs to, for instance, treat feature structures ACGs with Cartesian product ( &) ACGs with dependent product ( Π) • Those two extensions are Turing-complete formalisms On Two Extensions of ACGs – p.4/45 Type-Theoretic Extensions of ACGs • De Groote and Maarek (2007) • To enable ACGs to, for instance, treat feature structures ACGs with Cartesian product ( &) ACGs with dependent product ( Π) • Those two extensions are Turing-complete formalisms On Two Extensions of ACGs – p.4/45 2. Abstract Categorial Grammars On Two Extensions of ACGs – p.5/45 Types and Terms • A: a set of atomic types TA ::= A | (TA ( TA) α ( β ( γ ( δ abbreviates (α ( (β ( (γ ( δ))). • C: a set of constants ΛC ::= C | x | (λ ◦x.ΛC) | (ΛCΛC) λxyz.stu abbreviates (λx.(λy.(λz.((st)u)))). On Two Extensions of ACGs – p.6/45 Types and Terms • A: a set of atomic types TA ::= A | (TA ( TA) α ( β ( γ ( δ abbreviates (α ( (β ( (γ ( δ))). • C: a set of constants ΛC ::= C | x | (λ ◦x.ΛC) | (ΛCΛC) λxyz.stu abbreviates (λx.(λy.(λz.((st)u)))). On Two Extensions of ACGs – p.6/45 Typing System Σ = 〈A, C, τ〉: a higher-order signature • A: a set of atomic types, • C: a set of constants, • τ : C → T (A). `Σ c : τ(c) for c ∈ C x : α `Σ x : α for α ∈ TA Γ, x : α `Σ t : β Γ `Σ (λx.t) : α ( β x 6∈ dom(Γ) Γ `Σ t : (α ( β) ∆ `Σ u : α Γ, ∆ `Σ (tu) : β dom(Γ) ∩ dom(∆) = ∅ On Two Extensions of ACGs – p.7/45 Lexicon • A lexicon L = 〈σ, θ〉 from Σ1 = 〈A1, C1, τ1〉 to Σ2 = 〈A2, C2, τ2〉: σ : A1 → TA2 (type substitution) θ : C1 → ΛΣ2 (term substitution) `Σ2 θ(c) : σ̂(τ1(c)) is provable for all c ∈ C1, where σ̂ is the homomorphic extension of σ. • We write L (·) for σ̂(·) or θ̂(·), where θ̂ is the homomorphic extension of θ. • x1 : α1, . . . , xm : αm `Σ1 t : α implies x1 : L (α1), . . . , xm : L (αm) `Σ2 L (t) : L (α), On Two Extensions of ACGs – p.8/45 Abstract Categorial Grammars An ACG G = 〈Σ1, Σ2, L , s〉: • Σ1: abstract vocabulary • Σ2: object vocabulary • L : a lexicon from Σ1 to Σ2 • s ∈ A1: the distinguished type Abstract Language: A(G ) = { t ∈ ΛΣ1 |`Σ1 t : s is provable } Object Language: O(G ) = { t ∈ ΛΣ2 | ∃u ∈ A(G ) such that L (u) = t } We work modulo β: (λx.t)u →β t[x := u] Lexicon: `Σ2 L (c) : L (τ1(c))Categorial Grammars An ACG G = 〈Σ1, Σ2, L , s〉: • Σ1: abstract vocabulary • Σ2: object vocabulary • L : a lexicon from Σ1 to Σ2 • s ∈ A1: the distinguished type Abstract Language: A(G ) = { t ∈ ΛΣ1 |`Σ1 t : s is provable } Object Language: O(G ) = { t ∈ ΛΣ2 | ∃u ∈ A(G ) such that L (u) = t } We work modulo β: (λx.t)u →β t[x := u] Lexicon: `Σ2 L (c) : L (τ1(c)) On Two Extensions of ACGs – p.9/45 Abstract Categorial Grammars An ACG G = 〈Σ1, Σ2, L , s〉: • Σ1: abstract vocabulary • Σ2: object vocabulary • L : a lexicon from Σ1 to Σ2 • s ∈ A1: the distinguished type Abstract Language: A(G ) = { t ∈ ΛΣ1 |`Σ1 t : s is provable } Object Language: O(G ) = { t ∈ ΛΣ2 | ∃u ∈ A(G ) such that L (u) = t } Lexicon: `Σ2 L (c) : L (τ1(c)) On Two Extensions of ACGs – p.9/45Categorial Grammars An ACG G = 〈Σ1, Σ2, L , s〉: • Σ1: abstract vocabulary • Σ2: object vocabulary • L : a lexicon from Σ1 to Σ2 • s ∈ A1: the distinguished type Abstract Language: A(G ) = { t ∈ ΛΣ1 |`Σ1 t : s is provable } Object Language: O(G ) = { t ∈ ΛΣ2 | ∃u ∈ A(G ) such that L (u) = t } Lexicon: `Σ2 L (c) : L (τ1(c)) On Two Extensions of ACGs – p.9/45 Order of an ACG • Order of types: order(p) = 1 for p ∈ A. order(α ( β) = max{order(α) + 1, order(β)} for α ( β ∈ TA. • Order of a higher-order signature Σ = 〈A, C, τ〉: order(Σ) = max{ order(τ(c)) | c ∈ C }. • Order of an ACG G = 〈Σ1, Σ2, L , s〉: order(G ) = order(Σ1). Second-order ACGs generate PTIME languages. (Salvati 2005) Decidability of membership of Third-order ACGs is open. On Two Extensions of ACGs – p.10/45 Order of an ACG • Order of types: order(p) = 1 for p ∈ A. order(α ( β) = max{order(α) + 1, order(β)} for α ( β ∈ TA. • Order of a higher-order signature Σ = 〈A, C, τ〉: order(Σ) = max{ order(τ(c)) | c ∈ C }. • Order of an ACG G = 〈Σ1, Σ2, L , s〉: order(G ) = order(Σ1). Second-order ACGs generate PTIME languages. (Salvati 2005) Decidability of membership of Third-order ACGs is open. On Two Extensions of ACGs – p.10/45 Order of an ACG • Order of types: order(p) = 1 for p ∈ A. order(α ( β) = max{order(α) + 1, order(β)} for α ( β ∈ TA. • Order of a higher-order signature Σ = 〈A, C, τ〉: order(Σ) = max{ order(τ(c)) | c ∈ C }. • Order of an ACG G = 〈Σ1, Σ2, L , s〉: order(G ) = order(Σ1). Second-order ACGs generate PTIME languages. (Salvati 2005) Decidability of membership of Third-order ACGs is open. On Two Extensions of ACGs – p.10/45 Order of an ACG • Order of types: order(p) = 1 for p ∈ A. order(α ( β) = max{order(α) + 1, order(β)} for α ( β ∈ TA. • Order of a higher-order signature Σ = 〈A, C, τ〉: order(Σ) = max{ order(τ(c)) | c ∈ C }. • Order of an ACG G = 〈Σ1, Σ2, L , s〉: order(G ) = order(Σ1). Second-order ACGs generate PTIME languages. (Salvati 2005) Decidability of membership of Third-order ACGs is open. On Two Extensions of ACGs – p.10/45 Strings by Lambda Terms • For an alphabet Ξ, let ΣΞ = 〈{o}, Ξ, τ〉 be the higher-order signature with τ(a) = o ( o for all a ∈ Ξ. • A string a1 . . . ak ∈ Ξ is represented by the term /a1 . . . ak/ = λ ◦z.a1(. . . (akz) . . . ). • The empty string ε is represented as /ε/ = λz.z in particular. • Concatenation is realized by B = λxyz.x(yz). • We write t + u for λz.t(uz). On Two Extensions of ACGs – p.11/45 Example c ∈ C1 τ1(c) L (c) S , NP , Adj type o ( o Pierre NP /Pierre/ Etre Adj ( NP ( S λxy.y + /est/ + x Intelligent Adj /intelligent/ /Pierre/ + /est/ + /intelligent/ /Marie/ + /est/ + /intelligente/ /Marie/ + /et/ + /Pierre/ + /sont/ + /intelligents/ On Two Extensions of ACGs – p.12/45 Example c ∈ C1 τ1(c) L (c) S , NP , Adj type o ( o Pierre NP /Pierre/ Etre Adj ( NP ( S λxy.y + /est/ + x Intelligent Adj /intelligent/ ` Etre Intelligent Pierre : S L (Etre)L (Intelligent)L (Pierre) = (λxy.y + /est/ + x)/intelligent//Pierre/ β /Pierre/ + /est/ + /intelligent/ /Pierre/ + /est/ + /intelligent/ /Marie/ + /est/ + /intelligente/ /Marie/ + /et/ + /Pierre/ + /sont/ + /intelligents/ On Two Extensions of ACGs – p.12/45 Example c ∈ C1 τ1(c) L (c) S , NP , Adj type o ( o Pierre NP /Pierre/ Etre Adj ( NP ( S λxy.y + /est/ + x Intelligent Adj /intelligent/ /Pierre/ + /est/ + /intelligent/ /Marie/ + /est/ + /intelligente/ /Marie/ + /et/ + /Pierre/ + /sont/ + /intelligents/ On Two Extensions of ACGs – p.12/45 3. ACGs with Dependent Product On Two Extensions of ACGs – p.13/45 ACGs with Dependent Product • Dependent products are useful in defining generic syntactic categories, On Two Extensions of ACGs – p.14/45 ACGs with Dependent Product • Dependent products are useful in defining generic syntactic categories, e.g., 

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Faithful Representation of Non-Associative Lambek Grammars in Abstract Categorial Grammars

This paper solves a natural but still open question: can Abstract Categorial Grammars (ACGs) respresent usual categorial grammars? Despite their name and their claim to be a unifying framework, up to now there was no faithful representation of usual categorial grammars in ACGs. This paper shows that Non-Associative Lambek grammars as well as their derivations can be defined using ACGs of order ...

متن کامل

Combinatory Categorial Grammars: Generative Power and Relationship to Linear Context-Free Rewriting Systems

Recent results have established that there is a family of languages that is exactly the class of languages generated by three independently developed grammar formalisms: Tree Adjoining Grammm~, Head Grammars, and Linear Indexed Grammars. In this paper we show that Combinatory Categorial Grammars also generates the same class of languages. We discuss the slruclm'al descriptions produced by Combi...

متن کامل

On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms

We show how to encode context-free string grammars, linear contextfree tree grammars, and linear context-free rewriting systems as Abstract Categorial Grammars. These three encodings share the same constructs, the only difference being the interpretation of the composition of the production rules. It is interpreted as a first-order operation in the case of context-free string grammars, as a sec...

متن کامل

Abstract Categorial Parsing as Linear Logic Programming

This paper shows how the parsing problem for general Abstract Categorial Grammars can be reduced to the provability problem for Multiplicative Exponential Linear Logic. It follows essentially a similar reduction by Kanazawa, who has shown how the parsing problem for second-order Abstract Categorial Grammars reduces to datalog queries.

متن کامل

Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars

Two recent extension of the nonassociative Lambek calculus, the LambekGrishin calculus and the multimodal Lambek calculus, are shown to generate class of languages as tree adjoining grammars, using (tree generating) hyperedge replacement grammars as an intermediate step. As a consequence both extensions are mildly context-sensitive formalisms and benefit from polynomial parsing algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007